COPYRIGHT AND TERMS AND CONDITIONS

Using this manual and/or i1ts accompanying disk
‘indicates your acceptance of our conditions of sale.

This manual and its described computer programs are
copyrighted in both Canada and the United States of
America to Danosoft, Mississaugas Ontario, Canada,
and all rights are reserved. Reproduction of any part
of any program is forbidden without the expressed
written permission of Danosoft.

The computer programs and manual are sold on an "as
is" basis without warranty. Danosoft does not accept
any liability or responsibilityu with respect to
liabilityy, loss or damage caused or alleged to be
caused directly, or limited to consequential damages,
resulting from the use of this manual or accompanying
computer programs.

DANOSOFT, P.0O. Pox 1Z4, Station "AY, Mississauga, Ont.
Canada.

Third Printing

DL

o s

H et

INTRODUCTION

Welcome to "BIG BASIC®, a powerful basic system
modification.

Its memory management provides up to 472K of user
programming and/or data storage in 512K CoCos or up to
92K in 128K CoCos.

Unlimited sized programs or data can be chained
from disk without erasing variables or
re—initialization.

A slightly modified *CLEAR® command and three new
basic words activate the magic of "BIG BASIC®.

*"WINDOW® switches you between two distinct user
programming areas. "Window 1® can act as a control or
menu base, switching programs, variables or sections
of a single large program in "Window 2°.

*BLOCK®" switches between 59 blocks of BK user
memory in a 512K CoCo or 11 blocks of 8K user memory
in a 128K machine.

*ySWITCH®” temporarily allows a program’s variables
in one window to be used by a program in the other.
Repeating the command restores the original variables
intact.

In Window 2 the "CLEAR® command works normally. But
in Window 1 it can also be used to set the partition
between the two windows. MWindow 2 can be one to three
blocks of BK in sizey, (B192 to 24576 bytes) or you can
leave the computer in the normal single window mode.

This manual provides details of your power options
as outlined above and includes a memory table of the
available BK Blocks uyou can use.

Seven demonstration programs are included on your
®"BIG6 BASIC®" disk. They show just some of the
possibilities with BIG BASIC. After you get started,
be sure to 1list and study them for examples of
programmming with BIG BASIC.

We trust "BIG BASIC" will open new apportunities

for your use of the computer and wish you enjoyment
with our favorite machine.

BT —

P

GETTING STARTED

==t P LINAY S TR EL

The best way to get an idea of the expanded power of
"Big Basic® is to see a simple demonstration. Let’s
start by installing BIG BASIC from a "Coldstarted
computer. (See "COLDSTART®" at the end of this manual.)

Enter > LOADM "BB/512°

(128K machines use the "BB/12Z28K"® program. For
DOS 2.8 use the "BB 512/1-8" or "BB 128/1-@"
programs. For ADOS, LOAD and LIST either
*ADOS~BB/512" or "ADOS-BB/128" and read
instructions on how to use BIG BASIC with ADOS.)

Press a key and then enter> 7MEM

You will see that BIG BASIC starts with more than 2BK,
not the usual 22+K. (See *PCLEAR" in Appendix "A" for
more detail.) This is your first BIG BASIC bonus.

On your "BIG BASIC® disk is the *BB DEMO® program and
its "LLOADER". We will run this now.

Enter> RUN "LOADER".

Only eight demo test programs were loaded in, but
from this you can get the idea. This program can be
expanded on a 512K CoCo to run 58 basic programs of less
than BK each simultaneously. (It also is possible to
run one huge 488K+ program with any mix of program or
data.)

Select a program number and press ENTER. You will
find yourself in the centre of a short test program.
Press any key and return to the Menu program. Now select
*WINDOW/DEMO®"; read the message; press BREAK; and list
that program for more information. Enter RUN and press
any key to return to the main menu program.

Listing "WINDOW DEMO®" or "PROGRAM 3° to "PROGRAM B*
reveals the code that makes them possible. Each one is
in a window space of its own. You can edit the programs,
save them, load them, do a *NEW", whatever. The only
thing they have in common is they share the same
screens. Therefore screens are cleared when switching

3

windows and redrawn by the program in the next window
on entry; unless you use the technique described on page
8 of this manual.

The menu program is in the base window, or Window 1.
All the other programs are in Window 2, but Window 2 is
using different memory for each. Similar line numbers in
each window do not effect each other. Variable "A" in
Window 1 1is not the same variable "A® as in Window 2.
(But either window can access the variables af the
othery if desired; with the °"VSWITCH®* command.)

Instead of multiple self-contained programs in Window
2y you may use that window for multiple sections of one
large program or for storage of data. Window 1 must
have a control program that selects which block of your
computer’s memory you want to place in Window 2. Then
the Window 1 control program uses the WINDOW command to
Jump you into your program section in Window 2.
Normally, when your program sends you from Window 2 back
to Window 1, you will have code there to further direct
with the BLOCK command other program sections into
Window 2.

If Window 2 is saved from Window 1 with the "SAVEM*
commands when it is subsequently reloaded with the
*LOADM®" command from Window 1y, you can re-enter a
running program in Window 2 and you will find all

variables in Window 2 will be intact from the time of
the °"SAVEM®.

TO USE BIG BASIC WITHOUT DIFFICULTY YOU MUsT
CAREFULLY STUDY THE COMMANDS AND INFORMATION CONTAINED
IN APPENDIX "A® AND APPENDIX *B*.

EQUIPMENT REQUIREMENTS

“BIG BASIC® runs in a CoCo3 with Disk Extended Basic
RS-D0S. It’s a machine language program that patches the
computer’s basic operating system in some 78 locations.
Its presence is invisible to the user and it does not
occupy user memory.

In order to find memory in the operating system for
some of BIG BRASIC'S features, nearly all memory

S

CAGSETTE operations has been replaced.
cassette commands with BIG
commands will produce a *SN*

relating to
Therefore you cannot use
BASIC. (Use of these
error.)

It is suggested that running of multiple programs, or
huge programs, would not likely be undertaken in a
practical way from a cassette storage medium.

On the technical side users should be aware this
program does not use any basic system variable memory in
the low end of thg computer except the reset vector at
$72 to a “"Reset Protect® routine which other M.L.
programs can overwrite if they wish. Memory at the end
of the Disk Extended Rasic section and CoCo3’s expanded
commands section also is unused. These are popular
locations with other machine language programs and were
avoided to try to develop compatability.

The use of HARD DISKS is what we have in mind. A
few, but not ally hard disk systems have been tested. We
know RGB DOS by RGB Computer Systems of 294 Stilluwell
Ave., Kenmore, N.Y. 14217 works well with BIG BASIC.
This company’s hard disk system is among the best for
the Color Computer and is especially compatible with

most basic programs.

So far, BIG BASIC will not run under Burke &
Burke’s "Hyperio® system.

We welcome any information users of this program can
provide regarding using BIG BASIC with various hard disk
interfacing software packages.

Most existing basic programs will run in BIG BASIC
windows without change, but conflicts, even crashes, can
definitely arise if BIG BASIC protocols are not
followed. Study of Appendix ®"A" will show you what
commands may require editing to make an existing program
conform.

THE CONCEPT OF RIG BASIC

The CoCo3, unlike its predecessor models,; contains a
special Memory Management Unit (MMU)}. This powerful
addition manages all memory in the machine in blocks of
BK. Machine language programmers have been able to use

it for large programs and it is relied upon by the 05-9
system.

The MMU is required because the computing chip in the
CoCo can only work with &4K at one time.

In order to bring more memory to Basic users, BIG
BASIC has developed the concept of using two windows.
Programming in the base window (Windowl) can direct the
computer to flip in all its extra memory to Window 2.
BIG BASIC’s simple new command wordy BLOCK, does the .job
of communicating between you, the basic user, and the
MMU.

Blocks are brought into Window 2 one at a time, or up
to three at a time; depending on the size you set for
Window 2 with the CLEAR command. If you work with just
ane block at a time, executing programs and searching
for wvariables will require basic to search through just
a maximum of B8K. Thus under BIG BASIC you can have a
fast running program even though it might be mare than
488,088 bytes in length!

We believe this concept of operation is the best way
for basic programmmers to create massive programs.
Machine language programmers may even wish to save time
by letting BIG BASIC do the memory management for them
so they can do the programming that requires speed or
special operations.

LOADING AND SAVING

=M LN Nl WY

Under RIG BASIC you may load and save from either
window in the normal manner. By saving in blocks of 8
to 24K at a time, you may have programs prompt the
changing of several disks in order to store massive
programs or data.

Because LOAD and RUN erase existing memory and
variables when transferring from disk to computer, BIG
BASIC has developed the concept of GAVEM and LOADM. If
from Window 1 you SAVEM the contents of Window 2, you
will save the parameters of the running program and
the variables in that window. When you LOADM again and
switch to Window 2, you will find everything as you
left it. '

LOADM and SAVEM will not work this way in standard
CoCo3 basic because the Basic operating suystem stores
its ®"Stack® between your variable tables and your
string variables andy when you LOADM back your
programs; stack conflict causes a crash (sometimes so
subtly you may not notice at first.) BIG BASIC has
moved the “stack® and taken other necessary steps to
make LOADM and SAVEM work in this unique way.

Using LOADM and SAVEM you can transfer to disk
unlimited amounts of program sections or data!

The normal syntax for the SAVEM command is
required. That isy you need start, end, and execution
addresses. You will find the starting and ending
addresses of each window size in the table in Appendix
*A® under the CLEAR command. Use @ for the execution
address. i.e. To SAVEM a one—block Window 2 use: S5AVEM
"TEST®,;24576,32747,8

You may find it helpful to set variables in your
program for these addresses. Then you can SAVEM
TEST,A,B,:0

CAUTION!

Since LOADM is a straight memory load, 1t is
possible to load a 2-block program to a 1-block
window; or a 3-block program to a Z2-block window, or

7

some similar misadventure. To prevent a crash, or
memory loss, you must be careful not make this error.
We suggest a code denoting window size be included in
the program name when it is being saved. Or all memory
being saved from Window 2 should bear a related name
to the base program in Window 1 and all LOADM/SAVEM
operations be executed from program lines in the base
program. If the same program that saved 1is also the
program that loads there will be no window size
problems.

BIG DISK AND DOUBLE4@

Danosoft markets two utilities, BRIG DISK and
DOUBLE4B, which provide basic users who have
double-sided drives (like Tandy’s drive FD-5@2 for the
CoCo) with the ability to store 368K on one floppy
disk. Conflicts with the autostarting of these
utilities and BIG BASIC's autostart require that the
Disk Utilities be loaded into the computer FIRST.

MAINTAINING THE SCREEN

BIG BASIC windows all use separate programming
memory but share the same screens. (As per references
on Pages 4 and 13.) These screens are cleared every
time you jump between windows.

It 1is possible to go to the other window without
clearing the screen provided the same type of screen
(i.e. 32 or 48/88 or graphics) is being used by both
windows. POKE 33@22,57 (after installing BIG BASIC)
will disable the clearing action caused by switching.
POKE 33822,1568 will restore to normal.

USING TWO HI-RES TEXT SCREENS AT ONCE
THE "TWOVIEWS" DEMO

A Demonstration Program named "TWOVIEWS® is
included on your BIG BASIC program disk. You can
hold and switch between two hi-res text screens at
once. {For instance: one screen for a main menu,
another for a disk menu.) One screen can even be in 48
columns while the other is in 88.

APPENDIX R of this manual shows you that the
Hi-Res Text screen uses the Bk memory block No. 34.
However, both the 48-column and the B@-column screens
are contained in this block in less than 4K of
memory. Therefore we have developed the pokes that
modify the operating system to let you have another
HI-Res Text screen in the second unused 4k.

These two video screens are distinct from the
programming windows. Both can be used in any one of
the BIG BASIC programming windows. In fact, BIG BASIC
is not required at all. "TWOVIEWS" is a stand-alone
system that will work at any time in any CoCo3. When
combined with BIG BASIC, basic programmers now have
even greater flexiblity and power.

When you list °“TWOVIEWS® (in the 48-column
screen) it will seem long because it is filled with
remarks and notes about every part of its function. It
is best to print it out if you have a printer.

The program actually consists of two
subroutines....one to restore the video to normal, the
other to set the video to the second 4K memory area.
If you select what you need from a backup of the
program, and delete all spaces and remarks. and
combine the various pokes together on a single line,
each subroutine will be only two or three lines long.
Packed this way, switching between video screens will
be instant.

AUTOEXEC

Some users want their program to autoexec after
installing BIG BASIC.

If you install BIG BASIC with: POKE 44539,57:
LOADM "BB/512" (or "BB/128") the title screen will
come up as usual but BIG BASIC then will try to run a
basic file on your disk named "#/BAS". If it doesn’t
find ity you will return to direct mode with a "NE"
error.

You must create the "#° file on your working
disk to autoexec. (This is distinct from the *#/BAS"
file now on your master disk which is used when
installing BIG BASIC with *®ADOS3*.) It might look
like:

18 RUN °"TEST/BAG" or 18 LOADM *"TEST/BIN®

RGB DOSs which can autostart from hard disk,
autoexecs in a similar way to *#°. Under this DOS you
would have a basic program named "AUTOEXEC/BAS® which
would have a one line program: 18 POKE 44539,57:
LOADM *"BB/512®. Then, the one line program "#° would
take aver and run your program under BIG
BASIC.

When autoexecutingy you might want to change the
last line of the sign—on message to something like
"LOADING MY PRG®, instead of the "READY'...PRESS BAR".
While you cannot change the entire sign-on message
and copyright without causing a crash, uyou can
change 18 bytes for your own message on an exact
copy of the original BI& BASIC disk according to
the following table:

Version Track Sector Bytes
BB/512 16 2 116 - 133
BB/128 16 11 116 - 133
BB 512/1-@ 27 2 116 - 133
BB 128/1-8 27 11 116 - 133

For Example to change "BB/128":
DSKI$B, 16511, X%, Y$: MIDS(X$,116)=" LOADING
YOUR®: MID$(Y$,1)=" PGM °: DSKO$@,16,11,X%,Y%

NOTE2 There are 13 buytes inside the quotations for
X$ and 5 butes for Y%.

APPENDIX "A*

"BIG BASIC" has 3 new commands. Alsoy minor
changes have been made to a few other basic commands
to permit them to operate in the improved “BIG BASIC*®
environment.

CLEAR:

- Functions normally in Window Z.

~ Functions normally in Window 1 if just string
space is being set. (i.e. CLEAR 2@0).

- Otherwise in Window 1, °CLEAR® sets the window
partition to one of three sizes to either
create Window 25 or no 2nd Window at all.

A single Window is the *BIG RASIC" default
when first loaded.

~ Window partition addresses are:

NO. /BLOCKS START END

a 32728 32767
1 243576 37467
2z 16384 32767
3 8192 32767

- *CLEAR 208,32728"* or higher sets the single
window status.

- "CLEAR 28Q,24576" sets a 1-block Window 2.

- ®"CLEAR 20@,146384" sets a Z-block Window Z.

~ "CLEAR 280,8192" sets a 3-block Windouw 2
{Note: A PCLEAR@® or 1 setting must be 1in
place to have a 3-block Window. (theruwise
no memory would be available for the base
Window 1.}

- Please note that any address number less than
16384 will set a 3-block window; any address
between 16384 to 24575 will set a Z-block
window; any address number from 24576 to
32719 will set a 1-block Window; and any
number higher than 32719 will cancel the
partition and maintain a single window status.
This makes remembering partition addresses
easier. 1.e. “CLEAR 200,30200" will set a
1-Block Window. °"CLEAR 200,zZ0000 will set

a 2-Rlock Window. "CLEAR 200, 10000" will set
a 3-Block Window.

WARNING:

It is possible to crash the computer and lose
all your programming in the “"Normal® 64K of
computer memory using the "CLEAR” statement to
partition a second time. (Coldstarting,
without turning the machine off, however, will
preserve all programming outside the "Normal®
64Ky except the HGET/HPUT buffer in Block 52.)

The way to cause the crash is to partition
after a program; or variables, is installed in
Window 2. This is because new window sizes will
cause the two programs residing in the windows
to overlap along with their parameters which BIG
BASIC needs to maintain the windows. You can do
a normal "CLEAR® string space in Window 1 with
no problem. (i.e. "CLEAR 1888°) Or you can set
protected memory in Window 2 (i.e.
*CLEAR20G,310800"); but to change the partition,
you must do a "NEW®" in Window 2 and erase the
memory there to initial condition.

WINDOW#

Switches the user between 27 programming windows.
The option must be 1 or 2 and must come after
the 2nd "W" without a space. Otherwise you
will get a "SN® error.

You may use "Window 1" even if vou are already
there and nothing will occur. This is useful

if you are not sure which window you are in. If
you want to be in Window 1 simply enter
"WINDOW1" and you jump there or you are

already there.

If no Window 2 has been set up by the "CLEAR"
command, "WINDOWZ" will produce a "FC" error.

If "VSWITCH® has switched the variables between
windows, "WINDOW® (option) will produce a *FC®
error. This is to make sure windows and their
variables do not become mixed up. A "VSWITCH®
will correct the error.

If you transfer out of a window in direct mode,
you will be in direct mode when you later return.

1z

— If you transfer out of a window from within a

program, your later return to that window will
be to the next command of the program after

the "WINDOW®" command. Since both windows share
the same screensy; your screen will be cleared on
the return. If you wish to maintain a screen
display or menu, your next command after *WINDOW®
should re-establish the screen, but not the width.
Screen widths (i.e. 32, 48 or 88 columns) are
preserved during window changing. (See the demo
program that came with the BIG BASIC program.)
See page B for another method of keeping

your screen.

BLOCK##

This command points Window 2 to memory
elsewhere in the computer.

Study Appendix "B" to select apprapriate 8K
memory blocks to use.

The option must be a Decimal number between @
and 59, and not be 56y or less than 48 in a
128K CoCo. Other numbers will produce either
"5N® or "FC®" errors.

The option cannot be a variable and there must
be no space between "K* and the number to -
avoid an error.

Blocks that are in use in one size of a window
cannot be switched into the wrong size. i.e.
2-Blaocks cannot be switched into a 1-Block
Window.

The Block command checks the size of Window 2
and switches in the block specified by the
option plus the next two highest block
numbers if the window size will accomodate
them. i.e. Block 5@ will switch 58, 51 & 52
into a 3-Block window.

Any attempt to switch in an inappropriate set
of blocks will produce a °FC* error. i.e. -
in a Z2-Block Window, "Block 55" will produce a
"FC®* error because Block 56 cannot be used.
(56 is a basic system block). If earlier,
Block 48, 49 and 58 were switched out as a
3-Block window, you will not be able to switch
in just blocks 49 & 58 in a Z-Block Windouw.

13

- To unflag blocks for free use, you must first
replace them in their original window size,
then erase their memory with “NEW®. Coldstart-
ing {(without turning off the machine) will not
do this job. Even though the machine appears to
have coldstarted, memory outside the *"Normal”
CoCo 64K is not affected.

- Care must be taken in block switching to
select usable blocks,; especially graphics
blocks 48, 49, 58, 51 & 52 and the Hi-Res
text screen Rlock 54. If you are not using
the Hi-Res text screens, you may use Block 54
for programming and data; but if you subsequent-—
1y use the Hi-Res screen; your program will be
erased in that block. i.e. You put a program
in Block 54. Later you enter *WIDTH48°. The
screen will jump to the 46-column widths but
the screen clearing action of doing so, will
erase the program. Similar action applies to
the Hi—-Res graphic screen, or the HGET/HPUT
buffer in Block 52 if you use HGET/HPUT for
graphics. Best to use these blocks last when you
have no other choice.

VSWITCH

- VSWITCH has many uses, one of which is to let
you rapidly access from Window 1 large amounts
of data being block switched into Window 2, or
even block loaded from disk with "LOADM" (see
the SAVE/LOAD section.) Another use is to
monitor loop variables or flags. (See ®*GOSUR/
RETURN" & *“FOR/NEXT® below.)

= "VGWITCH®" switches into the current window all
of the variables and arrays contained in the
other window; but sets aside the current window
variables for restoring later.

-~ A subsequent "VSWITCH" does the restoration
of the original data.

- You may change add or delete the data while it
is switched and the changes will still be there
when you later go to the other window.

- If you are not sure whether data has been
switchedy, the command *PEEK(45299)" will help.
Not switched will equal @. Switched will equal

14

i. That memory location contains a “BIG BASIC®
status flag. Do not "POKE® or change it,; or
you will get scrambled memory.

~ WARNING: When your data is "VSWITCHED®" do not
edit, delete; or add basic pregram lines.
These actions will overlap variable memory and
will probably cause a grash.

- Just change or use your variables while you
are "Vswitched®, then *VSWITCH" back to normal.

-~ Also, avoid using "S5AVE® or "LOAD" when
*Yswitched® to prevent problems.

- At least one line of program or one variable
must exist in Window 2 when you use VSWITCH in
Window 1 or you will get a "FC* error.

- Some users may want to permanently transfer
variables between windows. The files
“YSWITCH/STR® and *"VSWITCH/NUM® on the BIG
BASIC disk, provide one-line basic subroutines to
do this. List them to an 868 column screen or
print them to see lengthy comments about the
method.

GOSUB/RETURN
FOR/NEXT"

— GOSUB/RETURN and FOR/NEXT loops work
normally in their respective windows but
are cancelled when you switch windows.
However, uyou can still loop between windows.
Loop count numeric variables, and return
variable flagsy can be accessed from the other
window with the "VSWITCH® command. Therefore
FOR/NEXT loops and GOSUBS can be simulated
with variables even though a window switch
has been made.

For Example:

PROGRAM IN WINDOW 1i:

18 WINDOWI ’'Main program in Window 1
20 A=4 ’'He will access the subroutine in
Window 2 for four times.
38 WINDOWZ 'Switch to Window 2
40 If A>4 THEN END ELSE 30 'Window Z will
always return to this line in Window 1.

PROGRAM IN WINDOW Z:

1@ PRINT *"TEST®" ’'Do the subroutine here.

28 VSWITCH ’Get Window 1 variables

38 A = A+1 ’Increment loop count

40 VSWITCH ’Restore Window 2 Variables

5@ WINDOW 1 "Return from the subroutine

6@ GOTO 18 ’ Once the program in this window
has been set running, WINDOW
switches to Window 2 will always
come to this line, This condition
can be made permanent after original
programming by saving and loading
this window with the "GAVEM® and
"L 0ADM® commands from WINDOW 1.
(See "SAVING" & *LOADING®)

PCLEAR

— Functions normally in Window 1 but you will
get a "FC" error in Window 2.

- The default startup setting of *PCLEAR is
PCLEARD for maximum user memory, not
the standard CoCo startup of PCLEAR4.

- If you are using an existing basic program
that requires PCLEAR4 (A "FC® error is the
indicator.) edit PCLEAR4 into the start of
the program. IF the existing program is in
Window 2 do a PCLEAR4 in Window 1 first,
because Window Z does not accept the PCLEAR
command.

- The "Pclear” command has been improved. "Pclear
under BIG BASIC now will work with any number
from @ to 17, provided sufficient memory is

available in Window 1 to accomodate the
selection. With a 1-block Window Z the highest
usable "Pclear® number is 13.

- If you are not using the low-res graphics,
"PCLEAR" can be used to protect an area of
memory for machine language subroutines in
low memory in Window 1.

FILES

— Functions normally in WINDOW 1 but you will
get a *FC®* error in Window 2.

DSKINL

- Functions in Window 1 or a no—window status
only. Gives a "FC" error in Window 2.
Window 1 must contain at least 8K of memory
or computer must be coldstarted after
*DSKINI®.

- While a disk data file can remain "(Open' when you
transfer between windows, the FIELD command uses the

ogperating system ®stack®” for its special field
variables. The ®"stack® is reset during window
switching. Therefore you must repeat the FIELD

command in each window if you want a data file to

be accessed by both.

ON ERR GOTO & BRK GOTO

~ These two commands are cancelled by the "Stack®

reset when you transfer between windows. Therefore,
they must be repeated on entry into a new window

if you are using them.

APPENDIX ER:

MEMORY BLOCK TABLE

Memory is managed in a CoCod in blocks of 8K each.
(1K = 1824 bytes; 8K = 8192 bytes)

The top B blocks are the normally used &4K.

USE ACCESS by "RIG BASIC®

BLOCK

63 CoCo3 Extra Rasic No

62 Disk Basic No

61 Color Basic No

6@ Extended Basic No

59 User Programs/Variables Yes

58 User Programs/Variables Yes

57 User Programs/Variables Yes

56 Rasic’s Variables/Buffers No

55 Free Memory Yes

54 Both 48 & 80 Column Hi-Res Yes if not using

Text Screens Hi—-Res Text Screens
53 Free Memory/Originally a Yes (Stack was
Secondary Stack Area Moved)

52 HGET/HPUT Buffer Yes if not using
HGET/HPUT

51 Hi-Res Graphics Screen Yes if not using
Graphics Screen

5@ Hi-Res Graphics Screen Yes if not using
Graphics Screen

49 Hi-Res Graphics Screen Yes if not using
Graphics Screen

48 Hi—-Res Graphics Screen Yes if not using
Graphics Screen

47 448K of Free Memory only Yes

to in the 51ZK CoCo3

a

(NOTE: The CoCo3 Ouwner’s Manual contains a memory
map that correlates with above block areas.)

18

COLDSTART

Different methods are used to re-initialize the
computer, or. "COLDSTART" it, either to start up a new
program or to recover from a "Crash®.

A "Crash® can be defined as occurring when the
computer’s processor has become confused and either
fails to respond to the user or malfunctions in subtle
wayss often accompanied by a scrambled screen display.

The wultimate and most complete "COLDSTART" is to
turn off the machine for at least {5 seconds, but
other solutions are usually possible.

CoCod users should hold down the "ALT® and *CTRL®
keys simultaneously and press the reset button. When
the picture of the three authors of the operating
system appears, release the two keys and press reset
again,

* ¥ ¥ R K ¥ ¥ ¥ ¥ ¥ ¥ ¥

T0 OUR VALUED CUSTOMERS:

Users of our programs are invited to comment. If
we have missed some vital pointy or something is not
explained clearly enough, please contact us and tell
us s0 we can ammend any reprints. We realize others
may see things differently than ussy and are
concerned that users are satisfied with our programs.

For enquiriesy comments, or assistance write:

DANOSOFT

P.0. Box 124, Station "A",
Mississauga, Ont. L5A 217
Canada

Telephone: (416) 897-6121 .

